Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 103(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36301238

RESUMO

Vaccinia virus (VACV) encodes scores of proteins that suppress host innate immunity and many of these target intracellular signalling pathways leading to activation of inflammation. The transcription factor NF-κB plays a critical role in the host response to infection and is targeted by many viruses, including VACV that encodes 12 NF-κB inhibitors that interfere at different stages in this signalling pathway. Here we report that VACV proteins C2 and F3 are additional inhibitors of this pathway. C2 and F3 are BTB-Kelch proteins that are expressed early during infection, are non-essential for virus replication, but affect the outcome of infection in vivo. Using reporter gene assays, RT-qPCR analyses of endogenous gene expression, and ELISA, these BTB-Kelch proteins are shown here to diminish NF-κB activation by reducing translocation of p65 into the nucleus. C2 and F3 are the 13th and 14th NF-κB inhibitors encoded by VACV. Remarkably, in every case tested, these individual proteins affect virulence in vivo and therefore have non-redundant functions. Lastly, immunisation with a VACV strain lacking C2 induced a stronger CD8+ T cell response and better protection against virus challenge.


Assuntos
Vaccinia virus , Vacínia , Humanos , NF-kappa B/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica
2.
Viruses ; 14(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35215908

RESUMO

The transcription factors IRF3 and NF-κB are crucial in innate immune signalling in response to many viral and bacterial pathogens. However, mechanisms leading to their activation remain incompletely understood. Viral RNA can be detected by RLR receptors, such as RIG-I and MDA5, and the dsRNA receptor TLR3. Alternatively, the DExD-Box RNA helicases DDX1-DDX21-DHX36 activate IRF3/NF-κB in a TRIF-dependent manner independent of RIG-I, MDA5, or TLR3. Here, we describe DDX50, which shares 55.6% amino acid identity with DDX21, as a non-redundant factor that promotes activation of the IRF3 signalling pathway following its stimulation with viral RNA or infection with RNA and DNA viruses. Deletion of DDX50 in mouse and human cells impaired IRF3 phosphorylation and IRF3-dependent endogenous gene expression and cytokine/chemokine production in response to cytoplasmic dsRNA (polyIC transfection), and infection by RNA and DNA viruses. Mechanistically, whilst DDX50 co-immunoprecipitated TRIF, it acted independently to the previously described TRIF-dependent RNA sensor DDX1. Indeed, shRNA-mediated depletion of DDX1 showed DDX1 was dispensable for signalling in response to RNA virus infection. Importantly, loss of DDX50 resulted in a significant increase in replication and dissemination of virus following infection with vaccinia virus, herpes simplex virus, or Zika virus, highlighting its important role as a broad-ranging viral restriction factor.


Assuntos
RNA Helicases DEAD-box/metabolismo , Herpes Simples/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Simplexvirus/fisiologia , Vaccinia virus/fisiologia , Vacínia/metabolismo , Infecção por Zika virus/metabolismo , Zika virus/fisiologia , Animais , RNA Helicases DEAD-box/genética , Herpes Simples/genética , Herpes Simples/virologia , Interações Hospedeiro-Patógeno , Humanos , Fator Regulador 3 de Interferon/genética , Camundongos , Fosforilação , Transdução de Sinais , Simplexvirus/genética , Vacínia/genética , Vacínia/virologia , Vaccinia virus/genética , Zika virus/genética , Infecção por Zika virus/genética , Infecção por Zika virus/virologia
3.
Euro Surveill ; 27(4)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086612

RESUMO

IntroductionImmunoassays targeting different SARS-CoV-2-specific antibodies are employed for seroprevalence studies. The degree of variability between immunoassays targeting anti-nucleocapsid (anti-NP; the majority) vs the potentially neutralising anti-spike antibodies (including anti-receptor-binding domain; anti-RBD), particularly in mild or asymptomatic disease, remains unclear.AimsWe aimed to explore variability in anti-NP and anti-RBD antibody detectability following mild symptomatic or asymptomatic SARS-CoV-2 infection and analyse antibody response for correlation with symptomatology.MethodsA multicentre prospective cross-sectional study was undertaken (April-July 2020). Paired serum samples were tested for anti-NP and anti-RBD IgG antibodies and reactivity expressed as binding ratios (BR). Multivariate linear regression was performed analysing age, sex, time since onset, symptomatology, anti-NP and anti-RBD antibody BR.ResultsWe included 906 adults. Antibody results (793/906; 87.5%; 95% confidence interval: 85.2-89.6) and BR strongly correlated (ρ = 0.75). PCR-confirmed cases were more frequently identified by anti-RBD (129/130) than anti-NP (123/130). Anti-RBD testing identified 83 of 325 (25.5%) cases otherwise reported as negative for anti-NP. Anti-NP presence (+1.75/unit increase; p < 0.001), fever (≥ 38°C; +1.81; p < 0.001) or anosmia (+1.91; p < 0.001) were significantly associated with increased anti-RBD BR. Age (p = 0.85), sex (p = 0.28) and cough (p = 0.35) were not. When time since symptom onset was considered, we did not observe a significant change in anti-RBD BR (p = 0.95) but did note decreasing anti-NP BR (p < 0.001).ConclusionSARS-CoV-2 anti-RBD IgG showed significant correlation with anti-NP IgG for absolute seroconversion and BR. Higher BR were seen in symptomatic individuals, particularly those with fever. Inter-assay variability (12.5%) was evident and raises considerations for optimising seroprevalence testing strategies/studies.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Anticorpos Antivirais , Formação de Anticorpos , Estudos Transversais , Humanos , Imunoglobulina G , Londres , Estudos Prospectivos , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus
5.
J Biol Chem ; 294(16): 6416-6429, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30819806

RESUMO

BTB-Kelch proteins are substrate-specific adaptors for cullin-3 (Cul3) RING-box-based E3 ubiquitin ligases, mediating protein ubiquitylation for subsequent proteasomal degradation. Vaccinia virus encodes three BTB-Kelch proteins: A55, C2, and F3. Viruses lacking A55 or C2 have altered cytopathic effects in cultured cells and altered pathology in vivo Previous studies have shown that the ectromelia virus orthologue of A55 interacts with Cul3 in cells. We report that the N-terminal BTB-BACK (BB) domain of A55 binds directly to the Cul3 N-terminal domain (Cul3-NTD), forming a 2:2 complex in solution. We solved the structure of an A55BB/Cul3-NTD complex from anisotropic crystals diffracting to 2.3/3.7 Å resolution in the best/worst direction, revealing that the overall interaction and binding interface closely resemble the structures of cellular BTB/Cul3-NTD complexes, despite low sequence identity between A55 and cellular BTB domains. Surprisingly, despite this structural similarity, the affinity of Cul3-NTD for A55BB was stronger than for cellular BTB proteins. Glutamate substitution of the A55 residue Ile-48, adjacent to the canonical φX(D/E) Cul3-binding motif, reduced affinity of A55BB for Cul3-NTD by at least 2 orders of magnitude. Moreover, Ile-48 and the φX(D/E) motif are conserved in A55 orthologues from other poxviruses, but not in the vaccinia virus proteins C2 or F3. The high-affinity interaction between A55BB and Cul3-NTD suggests that, in addition to directing the Cul3-RING E3 ligase complex to degrade cellular/viral target proteins that are normally unaffected, A55 may also sequester Cul3 from cellular adaptor proteins, thereby protecting substrates of these cellular adaptors from ubiquitylation and degradation.


Assuntos
Proteínas Culina/química , Complexos Multiproteicos/química , Vaccinia virus/química , Proteínas Virais/química , Substituição de Aminoácidos , Proteínas Culina/genética , Proteínas Culina/metabolismo , Células HEK293 , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação de Sentido Incorreto , Domínios Proteicos , Estrutura Quaternária de Proteína , Proteólise , Ubiquitinação/genética , Vacínia/genética , Vacínia/metabolismo , Vaccinia virus/genética , Vaccinia virus/metabolismo , Proteínas Virais/genética
6.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30814284

RESUMO

Viral infection of cells is sensed by pathogen recognition receptors that trigger an antiviral innate immune response, and consequently viruses have evolved countermeasures. Vaccinia virus (VACV) evades the host immune response by expressing scores of immunomodulatory proteins. One family of VACV proteins are the BTB-BACK (broad-complex, tram-trac, and bric-a-brac [BTB] and C-terminal Kelch [BACK]) domain-containing, Kelch-like (BBK) family of predicted cullin-3 E3 ligase adaptors: A55, C2, and F3. Previous studies demonstrated that gene A55R encodes a protein that is nonessential for VACV replication yet affects viral virulence in vivo Here, we report that A55 is an NF-κB inhibitor acting downstream of IκBα degradation, preventing gene transcription and cytokine secretion in response to cytokine stimulation. A55 targets the host importin α1 (KPNA2), acting to reduce p65 binding and its nuclear translocation. Interestingly, while A55 was confirmed to coprecipitate with cullin-3 in a BTB-dependent manner, its NF-κB inhibitory activity mapped to the Kelch domain, which alone is sufficient to coprecipitate with KPNA2 and inhibit NF-κB signaling. Intradermal infection of mice with a virus lacking A55R (vΔA55) increased VACV-specific CD8+ T-cell proliferation, activation, and cytotoxicity in comparison to levels of the wild-type (WT) virus. Furthermore, immunization with vΔA55 induced increased protection to intranasal VACV challenge compared to the level with control viruses. In summary, this report describes the first target of a poxvirus-encoded BBK protein and a novel mechanism for DNA virus immune evasion, resulting in increased CD8+ T-cell memory and a more immunogenic vaccine.IMPORTANCE NF-κB is a critical transcription factor in the innate immune response to infection and in shaping adaptive immunity. The identification of host and virus proteins that modulate the induction of immunological memory is important for improving virus-based vaccine design and efficacy. In viruses, the expression of BTB-BACK Kelch-like (BBK) proteins is restricted to poxviruses and conserved within them, indicating the importance of these proteins for these medically important viruses. Using vaccinia virus (VACV), the smallpox vaccine, we report that the VACV BBK protein A55 dysregulates NF-κB signaling by disrupting the p65-importin interaction, thus preventing NF-κB translocation and blocking NF-κB-dependent gene transcription. Infection with VACV lacking A55 induces increased VACV-specific CD8+ T-cell memory and better protection against VACV challenge. Studying viral immunomodulators therefore expands not only our understanding of viral pathogenesis and immune evasion strategies but also of the immune signaling cascades controlling antiviral immunity and the development of immune memory.


Assuntos
Evasão da Resposta Imune/fisiologia , NF-kappa B/antagonistas & inibidores , Vaccinia virus/metabolismo , Animais , Domínio BTB-POZ , Linhagem Celular , Proteínas Culina/metabolismo , Feminino , Células HEK293 , Humanos , Imunidade Inata , Carioferinas/metabolismo , Repetição Kelch/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Poxviridae/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Vacínia/virologia , Proteínas Virais/metabolismo , Virulência , Replicação Viral/fisiologia , alfa Carioferinas/metabolismo
7.
Infect Immun ; 82(11): 4878-88, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25183730

RESUMO

The enteric pathogens enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli employ a type 3 secretion system (T3SS) to manipulate the host inflammatory response during infection. Previously, it has been reported that EPEC, in a T3SS-dependent manner, induces an early proinflammatory response through activation of NF-κB via extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase Cζ (PKCζ). However, the activation of NF-κB during infection has not yet been attributed to an effector. At later time points postinfection, NF-κB signaling is inhibited through the translocation of multiple effectors, including NleE and NleC. Here we report that the highly conserved non-LEE (locus of enterocyte effacement)-encoded effector F (NleF) shows both diffuse and mitochondrial localization during ectopic expression. Moreover, NleF induces the nuclear translocation of NF-κB p65 and the expression of interleukin 8 (IL-8) following ectopic expression and during EPEC infection. Furthermore, the proinflammatory activity and localization of NleF were dependent on the C-terminal amino acids LQCG. While the C-terminal domain of NleF has previously been shown to be essential for interaction with caspase-4, caspase-8, and caspase-9, the proinflammatory activity of NleF was independent of interaction with caspase-4, -8, or -9. In conclusion, EPEC, through the T3SS-dependent translocation of NleF, induces a proinflammatory response in an NF-κB-dependent manner in the early stages of infection.


Assuntos
Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação da Expressão Gênica/imunologia , NF-kappa B/metabolismo , Fatores de Virulência/metabolismo , Caspases/genética , Caspases/metabolismo , Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Mitocôndrias , NF-kappa B/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima , Fatores de Virulência/genética
8.
Trends Microbiol ; 21(8): 430-41, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23870533

RESUMO

Injection of effector proteins by a type III secretion system (T3SS) is a common infection strategy employed by many important human pathogens, including enteric Escherichia coli, Salmonella, Yersinia, and Shigella, to subvert cell signaling and host responses. In recent years, great advances have been made in understanding how the T3SS effectors function and execute the diverse infection strategies employed by these pathogens. In this review, we focus on effectors that subvert signaling pathways that impact on endosomal trafficking, cell survival, and innate immunity, particularly phagocytosis, nuclear factor-κB (NF-κB), and mitogen-activated protein (MAP) kinase pathways and the inflammasome.


Assuntos
Apoptose , Endossomos/metabolismo , Enterobacteriaceae/fisiologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Proteínas de Membrana Transportadoras/metabolismo , Fatores de Virulência/metabolismo , Animais , Enterobacteriaceae/imunologia , Humanos , Inflamassomos/metabolismo , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Fagocitose , Transporte Proteico , Transdução de Sinais
9.
Proc Natl Acad Sci U S A ; 110(8): 3065-70, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23386723

RESUMO

Natural transformation is a dominant force in bacterial evolution by promoting horizontal gene transfer. This process may have devastating consequences, such as the spread of antibiotic resistance or the emergence of highly virulent clones. However, uptake and recombination of foreign DNA are most often deleterious to competent species. Therefore, model naturally transformable gram-negative bacteria, including the human pathogen Neisseria meningitidis, have evolved means to preferentially take up homotypic DNA containing short and genus-specific sequence motifs. Despite decades of intense investigations, the DNA uptake sequence receptor in Neisseria species has remained elusive. We show here, using a multidisciplinary approach combining biochemistry, molecular genetics, and structural biology, that meningococcal type IV pili bind DNA through the minor pilin ComP via an electropositive stripe that is predicted to be exposed on the filaments surface and that ComP displays an exquisite binding preference for DNA uptake sequence. Our findings illuminate the earliest step in natural transformation, reveal an unconventional mechanism for DNA binding, and suggest that selective DNA uptake is more widespread than previously thought.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Fímbrias/metabolismo , Neisseria meningitidis/genética , Western Blotting , Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Proteínas de Fímbrias/isolamento & purificação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...